Regulation of TNF-Related Apoptosis-Inducing Ligand Signaling by Glycosylation

نویسنده

  • Olivier Micheau
چکیده

Tumor necrosis-factor related apoptosis-inducing ligand, also known as TRAIL or APO2L (Apo-2 ligand), is a cytokine of the TNF superfamily acknowledged for its ability to trigger selective apoptosis in tumor cells while being relatively safe towards normal cells. Its binding to its cognate agonist receptors, namely death receptor 4 (DR4) and/or DR5, can induce the formation of a membrane-bound macromolecular complex, coined DISC (death-signaling inducing complex), necessary and sufficient to engage the apoptotic machinery. At the very proximal level, TRAIL DISC formation and activation of apoptosis is regulated both by antagonist receptors and by glycosylation. Remarkably, though, despite the fact that all membrane-bound TRAIL receptors harbor putative glycosylation sites, only pro-apoptotic signaling through DR4 and DR5 has, so far, been found to be regulated by N- and O-glycosylation, respectively. Because putative N-glycosylation sequons and O-glycosylation sites are also found and conserved in all these receptors throughout all animal species (in which these receptors have been identified), glycosylation is likely to play a more prominent role than anticipated in regulating receptor/receptor interactions or trafficking, ultimately defining cell fate through TRAIL stimulation. This review aims to present and discuss these emerging concepts, the comprehension of which is likely to lead to innovative anticancer therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periplasmic Expression of TNF Related Apoptosis Inducing Ligand (TRAIL) in E.coli

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of TNF family, is an interesting ligand which selectively induces apoptosis in tumor cells and, therefore, it has been developed for cancer therapy. This ligand has been produced by various hosts such as E.coli. However, protein expression in E.coli cytoplasm leads to problems such as incorrect folding, reduction in biolo...

متن کامل

Periplasmic Expression of TNF Related Apoptosis Inducing Ligand (TRAIL) in E.coli

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of TNF family, is an interesting ligand which selectively induces apoptosis in tumor cells and, therefore, it has been developed for cancer therapy. This ligand has been produced by various hosts such as E.coli. However, protein expression in E.coli cytoplasm leads to problems such as incorrect folding, reduction in biolo...

متن کامل

Cloning and Expression of TNF Related Apoptosis Inducing Ligand in Nicotiana tabacum

Molecular farming has been considered as a secure and economical approach for production of biopharmaceuticals. Human TNF Related Apoptosis Inducing Ligand (TRAIL) as a promising biopharmaceutical candidate has been produced in different expression hosts. However, little attention has been paid to molecular farming of the TRAIL in spite of numerous advantages of plant expression systems. Theref...

متن کامل

Cloning and Expression of TNF Related Apoptosis Inducing Ligand in Nicotiana tabacum

Molecular farming has been considered as a secure and economical approach for production of biopharmaceuticals. Human TNF Related Apoptosis Inducing Ligand (TRAIL) as a promising biopharmaceutical candidate has been produced in different expression hosts. However, little attention has been paid to molecular farming of the TRAIL in spite of numerous advantages of plant expression systems. Theref...

متن کامل

Glycosylation modulates TRAIL-R1/death receptor 4 protein: different regulations of two pro-apoptotic receptors for TRAIL by tunicamycin.

Death receptor 4 (DR4) is a receptor of the antitumor death ligand, TNF-related apoptosis-inducing ligand (TRAIL), and is considered a promising molecular target for cancer therapy. Here, we show a novel regulation of DR4 protein. Tunicamycin treatment, which is an inducer of endoplasmic reticulum (ER)-stress, generated a lower molecular-weight pattern of DR4, but not DR5 protein in prostate ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018